Fourth Order Compact Formulation of Navier-Stokes Equations and Driven Cavity Flow at High Reynolds Numbers

نویسندگان

  • E. Erturk
  • C. Gökçöl
چکیده

A new fourth order compact formulation for the steady 2-D incompressible Navier-Stokes equations is presented. The formulation is in the same form of the Navier-Stokes equations such that any numerical method that solve the Navier-Stokes equations can easily be applied to this fourth order compact formulation. In particular in this work the formulation is solved with an efficient numerical method that requires the solution of tridiagonal systems using a fine grid mesh of 601×601. Using this formulation, the steady 2-D incompressible flow in a driven cavity is solved up to Reynolds number of 20,000 with fourth order spatial accuracy. Detailed solutions are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Flow and Heat Transfer in a Square Driven Cavity

A numerical approach called “SIMPLER” is used to investigate the  flow and heat transfer characteristics in a square driven cavity. The two-dimensional incompressible Navier-Stokes equations were solved and the results are depicted as contour plots of stream function, vorticity, and total pressure for Reynolds numbers from 1 to 10000. At the higher values of Reynolds number, an inviscid core re...

متن کامل

Meshless Local Petrov-Galerkin Method– Steady, Non-Isothermal Fluid Flow Applications

 Abstract : The meshless local Petrov-Galerkin method with unity as the weighting function has been applied to the solution of the Navier-Stokes and energy equations. The Navier-Stokes equations in terms of the stream function and vorticity formulation together with the energy equation are solved for a driven cavity flow for moderate Reynolds numbers using different point distributions. The L2-...

متن کامل

A Compact Fourth - Order Finite Difference Scheme for the Steady Incompressible Navier - Stokes Equations

We note in this study that the Navier-Stokes equations, when expressed in streamfunction-vorticity fonn, can be approximated to fourth--order accuracy with stencils extending only over a 3 x 3 square of points. The key advantage of the new compact fourth-order scheme is that it allows direct iteration for low~to-mediwn Reynolds numbers. Numerical solutions are obtained for the model problem of ...

متن کامل

An Alternating Direction Implicit Method for Modeling of Fluid Flow

This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...

متن کامل

Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow

In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.NA/0411049  شماره 

صفحات  -

تاریخ انتشار 2004